Главная Статьи Источники теплоты автономных систем теплоснабжения

Источники теплоты автономных систем теплоснабжения

Активное развитие систем децентрализованного теплоснабжения является следствием значительных объемов нового коттеджного строительства в пригородных и сельских зонах застройки, а также реализации масштабных объемов жилищного строительства и реконструкции старой застройки городов. Расширению сферы применения децентрализованного теплоснабжения содействует рост количества нетиповых объектов, возводимых как в коттеджной, так и в городской застройке, где часто встают проблемы получения лимитов на отпуск тепловой энергии, возникающие из-за нехватки имеющихся мощностей централизованных источников и тепловых сетей. 
   Устойчивая тенденция роста числа крышных, встроенных, пристраиваемых и отдельно стоящих автономных котельных, обеспечивающих теплоснабжение отдельных зданий (реже группы зданий), тепловой мощностью от 30 кВт до 3,5 МВт, подтверждается на протяжении двух последних лет и может оцениваться для различных регионов значением 20-80% от тепловых мощностей, вводимых в жилищно-коммунальном хозяйстве. 
   Современная система децентрализованного теплоснабжения представляет сложный комплекс функционально взаимосвязанного оборудования, включающего автономную теплогенерирующую установку и инженерные системы здания (горячее водоснабжение, системы отопления различного назначения и вентиляции). Требования, предъявляемые потребителями теплоты современного здания к параметрам и характеристикам теплоносителя, условиям контроля и управления режимами отпуска теплоты, продолжительности функционирования, ставят целый комплекс теплотехнических задач перед теплогенерирующей установкой, существенно усложняя ее структуру. 
   Технические решения тепловых схем автономных источников должны учитывать особенности исходных условий: по виду используемого топлива; типу теплогенератора; качеству исходной воды; условиям потребления горячей воды; по конструктивному исполнению систем отопления (центральные, напольные, включая подогрев воды в бассейнах); по режимам работы систем вентиляции и др. Эти технические решения требуют тщательного обоснования выбора теплогидравлической схемы, анализа условий работы, обеспечения надежности функционирования и защиты оборудования от нерасчетных режимов эксплуатации.
   Выпущенный Госстроем России Свод правил по проектированию СП 41-104-2000 'Проектирование автономных источников теплоснабжения' в силу объективных факторов охватывает только основные требования к конструктивным решениям и не может содержать исчерпывающего объема рекомендаций для проектирования (в частности, р. 5 'Котлы и вспомогательное оборудование котельных', р. 6 'Водоподготовка и водно-химический режим'). 
   Целью публикации является дополнение рекомендаций нормативных документов [1-5] детальным рассмотрением перечисленных выше факторов в конкретных технических решениях принципиальных тепловых схем автономных источников теплоснабжения с использованием примеров расчета и комментариев, предоставляющих разработчикам схем теплоснабжения (или их узлов) информацию для обоснования проектных решений.

I. Системы горячего водоснабжения от автономных теплогенераторов

   Автономные системы горячего водоснабжения в жилищно-коммунальном секторе имеют длительную историю развития как в малоэтажной застройке, так и в многоэтажных зданиях. Первыми теплогенераторами были водогрейные колонки. Однако уже в самом начале их использования они имели различную конструкцию в зависимости от вида используемого топлива (дровяные и газовые). Газовые водогрейные колонки - термоблоки - как элемент единой системы теплоснабжения (при централизованном отоплении) в настоящее время широко используются в газифицированных районах городской застройки. Развитие социальной сферы расширяет область применения и увеличивает мощность автономных источников в системах горячего водоснабжения объектов питания, гостиниц, спортивных сооружений, предприятий автосервиса и др. 
   Разделение автономной системы теплоснабжения на две функциональные структуры - систему горячего водоснабжения и систему отопления зданий - может быть рациональным только при использовании в качестве энергоносителя газообразного (природный и сжиженный газ) или жидкого топлива (в данном обзоре не рассматривается электроэнергия), которые позволяют полностью автоматизировать работу теплогенераторов, что при использовании твердого топлива в автономных 
   теплогенераторах представляется весьма дорогостоящим и проблематичным в 
   комплексе технически наиболее сложных и трудоемких процессов топливоподачи и золоудаления с учетом необходимости обслуживания нескольких очагов горения. 
   Существенное влияние на технические решения и режимы работы автономной системы горячего водоснабжения оказывает тип теплогенераторов, которые можно классифицировать как проточные и емкостные.

I.1. Проточные теплогенераторы

   Основной особенностью проточных автономных теплогенераторов является форсированный гидравлический режим водяного контура с движением теплоносителя со скоростью более 1,5 м/с. Такие гидравлические режимы работы теплогенератора реализуются за счет существенного уменьшения (по сравнению с емкостными теплогенераторами) объема теплоносителя в нем до 0,025-0,035 дм3 на 1 кВт теплопроизводительности. Малые объемы теплоносителя улучшают динамические характеристики теплогенератора, обеспечивая период релаксации по тепловому возмущению 0,5-2 с/°C, и позволяют создать компактные высокоэффективные теплообменники теплогенераторов при использовании со стороны продуктов сгорания развитых поверхностей нагрева с высоким ребром и большой степенью оребрения. В большинстве конструкций проточных теплогенераторов для теплообменников используется медь или нержавеющая сталь. 
   Проточные теплогенераторы имеют сравнительно высокое гидравлическое сопротивление, однако, их важным эксплуатационным качеством является устойчивость к отложению накипи в поверхностях нагрева, что объясняется явлением 'смывания' отложений солей жесткости при значительной скорости потока (для меди - уже при скорости потока от 1 м/с, а при скорости 5 м/с - полное исключение отложений). 
   В технических решениях схемы гидравлической обвязки проточного теплогенератора важно обеспечить защиту теплообменника от низких температур теплоносителя на входе и, как следствие, возникновение внутренних механических напряжений в элементах конструкции теплообменника, а также защитить горелочное устройство от попадания в него образующегося в этом случае конденсата, что наиболее характерно для систем горячего водоснабжения при подаче в холодный период года воды с температурой 5°C. Для исключения таких режимов работы необходимо обеспечить температуру поступающей в теплогенератор воды не ниже 40°C за счет рециркуляции горячей воды (схемы I.1.1б; I.1.4), соответствующей обвязки трубопроводами баков-накопителей (схемы I.1.2; I.1.3) или подбора поверхности теплообменников (схемы I.1.4; I.1.5; I.1.6). 
   Простейшая схема горячего водоснабжения от проточного водонагревателя (схема I.1.1а), тупиковая без циркуляционной линии, используется в малопротяженных квартирных системах, оснащенных теплогенераторами мощностью до 30 кВт, в которых для предварительного подогрева воды перед основным оребренным теплообменником и для защиты атмосферной горелки от конденсата достаточно часто используется экранирование топочной камеры листовой медью с внешним змеевиком большого шага из медной трубы. 
   В ряде случаев решающим фактором при выборе схемы горячего водоснабжения является возможность регулирования мощности горелочного устройства, а следовательно, и теплогенератора. При позиционном регулировании мощности проточного теплогенератора (Q/Qн=0-1 или Q/Qн=0-0,5-1) использование схемы горячего водоснабжения без накопительной емкости (схемы I.1.1; I.1.4) требует установки оборудования, подбираемого по максимальному 'пиковому' теплопотреблению в системе, что в совокупности приводит к существенным колебаниям температуры 
   подаваемой воды. Поэтому при использовании теплогенераторов с позиционным регулированием мощности следует отдавать предпочтение схемам I.1.2; I.1.3; I.1.5; I.1.6 с аккумуляцией горячей воды, для которых номинальная мощность теплогенератора подбирается с учетом емкости бака-накопителя (емкостного водонагревателя) по величине среднечасовой за сутки нагрузки горячего водоснабжения. 
   Использование проточных теплогенераторов, оснащенных модулируемыми горелочными устройствами с хорошей глубиной регулирования (Q/Qн=0,2-1,0) в схемах I.1.1 и I.1.4, обеспечивает стабильные технические и эксплуатационные показатели работы системы горячего водоснабжения без применения накопительных емкостей. 
   Необходимо отметить, что недопустимо применение в системе горячего водоснабжения оцинкованных стальных труб с теплогенераторами, оснащенными медными теплообменниками. 
   Качество и долговечность работы проточных теплогенераторов в системе горячего водоснабжения во многом определяются техническим обоснованием решения по надежному обеспечению гидравлического режима и защите теплогенератора.

I.2. Емкостные теплогенераторы

   Особенности работы проточных теплогенераторов должны учитываться и при использовании емкостных теплогенераторов (схемы I.2.1; I.2.2) в тех случаях, когда объем воды в емкостном теплогенераторе менее 5 дм3 на 1 кВт мощности. 
   Для емкостных теплогенераторов систем горячего водоснабжения (схемы I.2.1; I.2.2) и для вторичных контуров схем с независимым подключением проточных теплогенераторов (схемы I.1.4; I.1.5; I.1.6) необходимо учитывать ряд важных моментов: 
- предусматривать защиту оборудования от отложений накипи умягчением воды в установках ее химической обработки (наиболее остро необходимость обработки воды становится при ее общей жесткости 4,5 мг-экв/л и более); 
- обеспечить защиту емкостей-аккумуляторов от внутренней коррозии (в большинстве случаев путем антикоррозионной обработки поверхностей емкости и электрохимической защитой, преимущественно с магниевым анодом); 
- системой управления работой емкостных водонагревателей, баков-аккумуляторов обеспечивать периодический (один раз в 5-8 дней) нагрев воды в емкости до 90°C с целью уничтожения бактерий легионелл. 
   Необходимо также учитывать, что схемы I.2.1, I.2.2 с емкостными теплогенераторми обладают значительной тепловой инерцией в периоды запуска и больших водоразборов и могут приводить к существенным колебаниям температуры воды у потребителя. 
   При обосновании числа установленных теплогенераторов и их единичной мощности необходимо руководствоваться суточным графиком потребления горячей воды, значениями часовой неравномерности потребления, максимальным и среднечасовым расходами в системе, наличием баков-аккумуляторов, типом теплогенераторов (емкостные или проточные) и их параметрическим рядом (по мощности). При применении схем без баков - аккумуляторов горячей воды суммарная мощность устанавливаемых теплогенераторов подбирается по максимальному 'пиковому' потреблению горячей воды, при использовании баков-аккумуляторов (емкостных нагревателей) все оборудование первичного контура схемы горячего водоснабжения (включая теплогенераторы) подбирается по среднечасовой нагрузке горячего водоснабжения:

   где Gi - расход горячей воды за i-й час.

   Во всех случаях использования двух и более котельных агрегатов для работы в системе горячего водоснабжения (схемы I.1.1-I.1.6) рекомендуется производить обвязку теплогенераторов по приведенным схемам с индивидуальными для каждого теплогенератора питательными насосами и запорно-регулирующей арматурой. 
   При каскадном регулировании мощности параллельно включенных теплогенераторов для исключения перетока холодной воды в режимах работы одного теплогенератора рекомендуется устанавливать клапан 'отсечки' потока (схема I.1 - А)

1.3. Пример расчета

   В качестве примера приведены результаты расчета схемы горячего водоснабжения (схема I.1.1б) с непосредственным водоразбором от проточного теплогенератора. 
   Тепловая мощность установки рассчитывалась по максимальному 'пиковому' расходу теплоты на горячее водоснабжение /СП 41-104-2000 п. 3.13 г./, в примере Qmaxгв =540 кВт. К установке принят проточный водогрейный котел R18-154 фирмы Wolf-Rendomax с модулируемой горелкой, номинальной теплопроизводительностью Qномк =558 кВт. Расход теплоносителя через котел согласно паспортным данным Gк=47 м3/ч=13,06 кг/с, гидравлическое сопротивление котла DPк=46 кПа. 
   Тепловая схема рассчитывалась для четырех характерных режимов: 
   - зимний с максимальной нагрузкой Qmaxгв =540 кВт; 
   - зимний со среднечасовой нагрузкой горячего водоснабжения Qгвср=225 кВт; 
   - зимняя с частичной нагрузкой Qгв=0,5 Qгвср=112,5 кВт; 
   - летняя с максимальной нагрузкой Qmaxгв =354 кВт /СП 41-104-2000/. 
   Среднечасовая нагрузка Qгвср рассчитывалась по рекомендациям /СП 41-104-2000,       п. 3.13. г./ исходя из величины максимальной нагрузки Qmaxгв =2,4 Qгвср кВт. 
   Расход воды в циркуляционном трубопроводе принимали Gц=0,1 Gгвср.

Обозначения:

  Qтг; Qто - тепловая мощность теплогенератора, теплообменника; 
   Gтг - расход через теплогенератор; 
   Gнп; Gхв - подача питательного насоса; холодного водосн.; 
   Pнп; Pнхв - напор питательного насоса; холодного водосн.; 
   Pгс - гидростатический напор в системе ГВС; 
   DPтг - гидравлическое сопротивление теплогенератора; 
   DPIк - гидравлическое сопротивление первичного контура; 
   DPIIк - гидравлическое сопротивление вторичного контура; 
   DPпк - гидравлическое сопротивление промежуточного контура; 
   DPто - гидравлическое сопротивление теплообменника; 
   ТГ - теплогенератор; 
   ЕН - емкостной нагреватель; 
   ТО - теплообменник; 
   РС - расширительный сосуд; 
   БН - бак-аккумулятор; 
   ГВ - горячая вода; 
   ХВ - холодная вода; 
   НП - насос питательный; 
   НЦ - насос циркуляционный ГВ; 
   НПК - насос промежуточного контура; 
   НХВ - насос холодной воды.

Литература

   1. СП 41-104-2000. Проектирование автономных источников теплоснабжения. 
   2. СНиП II-35-76*. Котельные установки. 
   3. СНиП 2.04.01-85*. Внутренний водопровод и канализация зданий. 
   4. СНиП II-34-76*. Горячее водоснабжение. 
   5. Правила устройства и безопасной эксплуатации паровых котлов с давлением пара не более 0,07 МПа (0,7 кгс/см2), водогрейных котлов и водонагревателей с температурой нагрева воды не выше 388 К (115°C).

Источник: СЕЛЕКТ

Авторы: П. А. Хаванов, доктор техн. наук, профессор МГСУ, ведущий специалист компании 'СЕЛЕКТ'.

Нужна консультация или монтаж оборудования?

+7(495) 789-90-58 или Отправьте заявку

Дизайн и программирование Безопасный выход